
Join us at faradaysec.com

curl --user "APITest\API.User"
 "elements":[
 {
 "type":"Contact",
 "id":"1",
 "createdAt":"1403034086",
 "depth":"minimal",
 "name":"george.washington@america.com",
 "updatedAt":"1410193024",
 "emailAddress":"george.washington@america.com"

 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 },
 {
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 }
],
{
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 "page":1,
 "pageSize":2,
 "total":527
}
curl --user "APITest\API.User"
 "elements":[
 {
 "type":"Contact",
 "id":"1",
 "createdAt":"1403034086",
 "depth":"minimal",
 "name":"george.washington@america.com",
 "updatedAt":"1410193024",
 "emailAddress":"george.washington@america.com"

 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 },
 {
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 }
],
{
 "type":"Contact",
 "id":"2",
 "createdAt":"1403113589",
 "depth":"minimal",
 "name":"john.a.macdonald@canada.com",
 "updatedAt":"1403113589",
 "emailAddress":"john.a.macdonald@canada.com"
 "page":1,
 "pageSize":2,
 "total":527
}

Integrating Faraday
in the software
development process

Part Three

This white paper produced by our technical team, shares
important information to attack vulnerabilities from the first
stage when developing software.

Integrating Faraday in the software development process Part Three 2

Faraday’s mission is to make security simple and accessible to everyone, using our

experience and passion to enable SMB/SME companies reducing their gap between

exposure and remediation.

We truly believe that a clear understanding of your security posture is the primary key

to reduce your attack surface, allowing you to make smarter decisions to protect your

most valuable assets.

Security is a world-class engineering challenge and we want to help. We are a

passionate leading team that wants to transform the way security works.

About Us

Outstanding research results published

Constant contribution to the global security community

+15 years working with F500

Speakers at the best security conferences

+60 employees worldwide

Get to know us at faradaysec.com

http://www.faradaysec.com

Integrating Faraday in the software development process Part Three 3

Integrating Faraday in
the software development
process - Part Three

Introduction

Previous considerations

From a while we are explaining to you how to integrate our Faraday instance to our

development process of Python applications integrated with Heroku easily. In our last

posts, we did this using Github Actions and Jenkins Pipelines.

Today we are going to implement this using Travis CI as a CD/CI tool because this is

one with good market share.

As we did in the last post, we are going to assume that you already have a python

repository in some git server that already is setup using Heroku. You can read our first

post if you want to know how to set this and get more context.

Travis CI is a CD/CI tool that has two versions: The paid version allows us to use

private git repositories and the free version allows us only to use public repositories.

We are not going to go deep into the config of each version because each one has a

different way to configure it but it is not hard, just read the official documentation. We

are going to focus on the .travis.yml file and how must be configured to integrate it

with our Faraday instance.

Integrating Faraday in the software development process Part Three 4

The first step is to create a file called .travis.yml in the root of our repository, just as

we did with the Jenkinsfile file in our last post. This file will be read by Travis on each

push and will allow us to build, test, deploy our application and upload the result to our

Faraday instance.

Once the file is created, we need to write the following in it:

Let’s explain what means each line written in previous code block:

• The first line is pretty clear: this is telling to Travis that we are going to build an

application written in Python.

• The services section allows us to tell to Travis that our execution flow will

require some external service while it is executing our task like mongodb, redis,

etc. In our case we are going to use docker because we need it to run zap later.

1. Creating the .travis.ylm file

language: python
services:
 - docker
python:
 - ‘3.9’
env:
 - PROJECT=faraday-vmpipelines
before_install
 - docker pull owasp/zap2docker-stable
 - docker build https://github.com/flopezluksenberg/docker-faraday-
report-uploader.git#bandit -t faraday-uploader
script:
 -

YML

faraday-vmpipeline-gitlab
 dbs
 setup
 static
 templates
 venv

.gitignore

.travis.yml

Integrating Faraday in the software development process Part Three 5

2. Defining the script section

As we said, the script section is the most important because here is where Travis will

execute each line of our building process sequentially. Hopefully All the environment

were set up in the previous sections so we can only focus on the execution sequence.

As we did in the previous post, we will run bandit over our code, we will deploy our

app in Heroku, we will run a remote scan using Zap over our just deployed app and

we will finish this process uploading the report status to our Faraday instance.

Note: All sections before script are necessary for general setup. In our case the
dependencies of our repository will be installed automatically because we said to
Travis that the language to be used is python so Travis will find the requirements.txt
file to install the required dependencies before execute the script section.

• Under python section we are going to set the python version. In this case the

version is 3.9.

• The env section allows us to specify environment variables that we need to

use during execution. In our case we are going to create the PROJECT variable

because we need it to build the workspace name in our Faraday instance later.

• In the before_install section we tell to Travis what need to do before install

our dependencies. In our case we are using this section to pre-setup the docker

images that we will use later.

• The script section is the most important in this file. Here we are going to write

each step to be executed by Travis sequentially. You will notice that is pretty

similar as we did in our last posts using Github Actions and Jenkins Pipelines.

 language: python
services:
 - docker
python:
 - ‘3.9’
env:
 - PROJECT=faraday-vmpipelines
before_install
 - docker pull owasp/zap2docker-stable
 - docker build https://github.com/flopezluksenberg/docker-far-
aday-report-uploader.git#bandit -t faraday-uploader

Integrating Faraday in the software development process Part Three 6

Let’s read step by step of previous code block to understand what we did on the

script section:

• In the first line we are running bandit over our repository. This is not different in

comparison with the previous posts.

• The following three steps are used to setup and deploy our app to Heroku.

Again, we did it equally as we did in our previous posts. Here is important to notice

the custom environment variables called $HEROKU_API_KEY and $HEROKU_

APP_NAME. We will explain later how to declare custom variables in Travis.

• Then we create a variable to store the current date because we will need

later to create the workspace in our Faraday instance. The variable name is

$CURRENT_DATE.

• Then we use docker. The first docker run is to scan and identify vulns on

our deployed app using Zap. Please notice that we are using another custom

environment variable called $ZAP_SCAN_URL.

• When the previous scan finishes we just need to upload both generated

reports to our Faraday instance. This is not different in comparison as we did in

the previous posts because docker let us do it easily. Notice that we have used

two environment variables provided by Travis and some custom environment

variables too. The Travis environment variables are the following:

• $TRAVIS_BUILD_DIR: This is pretty clear, it is the build dir that Travis is

using to run the task

script:
 - bandit -r $TRAVIS_BUILD_DIR -f xml -o $TRAVIS_BUILD_
DIR/flaskapp_faraday_bandit.xml /-exit-zero
 - git remote rm heroku /| true
 - git remote add heroku
 https://heroku:$HEROKU_API_KEY@git.heroku.com/$HEROKU_APP_NAME.git > /dev/null
 - git push heroku HEAD:master -f
 - export CURRENT_DATE=$(date +’%Y-%m-%d’)
 - docker run -u root -v $TRAVIS_BUILD_DIR:/zap/wrk/:rw /-network=host -t owasp/
zap2docker-stable zap-baseline.py -t $ZAP_SCAN_URL -x flaskapp_faraday_zap.xml /| true
 - docker run /-name faraday-uploader /-rm -v $TRAVIS_BUILD_DIR:
$TRAVIS_BUILD_DIR -e HOST=$FARADAY_URL -e USERNAME=$FARADAY_USERNAME
-e PASSWORD=$FARADAY_PASSWORD -e WORKSPACE=$PROJECT-$CURRENT_DATE-$TRAVIS_BUILD_NUMBER
-e FILES=$TRAVIS_BUILD_DIR/flaskapp_faraday_bandit.xml faraday-uploader
 - docker run /-name faraday-uploader /-rm -v $TRAVIS_BUILD_DIR:
$TRAVIS_BUILD_DIR -e HOST=$FARADAY_URL -e USERNAME=$FARADAY_USERNAME
-e PASSWORD=$FARADAY_PASSWORD -e WORKSPACE=$PROJECT-$CURRENT_DATE-$TRAVIS_BUILD_
NUMBER -e FILES=$TRAVIS_BUILD_DIR/flaskapp_faraday_zap.xml faraday-uploader

Integrating Faraday in the software development process Part Three 7

We already set up the .travis.yml file but to get a successful build we still need to set

up the custom environment variables that we have used previously.

To do this, we need to go to the settings of our repository through the Travis website

(doesn’t matter what version you have). Once inside this, you need to find the

Environment Variables section and add all the variables that we used previously

one by one.

3. Creating the custom environment variables in Travis

• $TRAVIS_BUILD_NUMBER: This variable tell us what running number

is the current one.

The custom environment variables are the following:

• $FARADAY_URL: This is our Faraday instance url.

• $FARADAY_USERNAME: Faraday username that will upload the

reports

• $FARADAY_PASSWORD: Faraday password of the previous username

that will upload the reports

• $PROJECT: We have defined this environment variable in the env

section previously. This is used to create the workspace name.

• $CURRENT_DATE: We have created this variable previously in the

script section. This returns the day with the following format yyyy-MM-dd.

Note: We are not going to go deep here because we’ve cover a lot in the previous
posts. If you can’t follow this post please go to read the previous ones to get
more context.

Integrating Faraday in the software development process Part Three 8

The Travis UI is pretty simple so we are not going to go deep here. It is important

to notice that you can set variable values by branch, so you could set up different

Faraday instances based on the branch.

When you finish it you can see your build in Travis. If all went ok, you will see

something like the following:

And that ‘s all. Now you can go to your Faraday instance and check the new

workspace as we did in the previous posts.

Integrating Faraday in the software development process Part Three 9

If you enter to the Status Report section you can see the detected vulns:

Integrating Faraday in the software development process Part Three 10

Conclusions
As you can see, this implementation was pretty easy. In addition you can

see that the steps to set up the environment were pretty similar to Jenkins

Pipelines and Github Actions.

App Vuln Management: Integrating Faraday

in the software development process

Docker Faraday Report Uploader

Example repository (branch: travis)

Faraday plugin list

OWASP Zap official site

Bandit official site

Vulnerable example app

Useful links

https://faradaysec.com/integrating-faraday/
https://faradaysec.com/integrating-faraday/
https://github.com/infobyte/docker-faraday-report-uploader
https://www.csoonline.com/article/3245748/what-is-devsecops-developing-more-secure-applications.html
https://github.com/infobyte/faraday-vmpipelines/tree/travis
https://en.wikipedia.org/wiki/Vulnerability_management
https://github.com/infobyte/faraday/wiki/Plugin-List
https://github.com/infobyte/faraday-vmpipelines
https://www.zaproxy.org
https://docs.github.com/en/free-pro-team@latest/actions
https://bandit.readthedocs.io/en/latest/
https://support.faradaysec.com/portal/en/kb/articles/plugins#:~:text=There%20are%20three%20kinds%20of,(also%20called%20Online).
https://github.com/midpipps/PythonFlaskVulnerableApp

